
xxxxxxxxxxxxxx

COMMUNICATIONS OF THE ACM October 1998/Vol. 41, No. 10 37

When this interoperability goal was realized in
1996 with the issuance of the CORBA 2.0 (Common
Object Request Broker Architecture 2.0) specification
[2, 6], two notable things happened: First, the infra-
structure-oriented OMG members who had been
concentrating on CORBA and the basic services were
suddenly free to expand their horizons to include
extended features; as a result, the basic CORBA
object model is being extended to include multiple
interfaces per object, objects passable by value, a
beans-like component model, and support for real-
time, fault-tolerant, and embedded CORBA [3].

A second result was that companies and organiza-
tions working in vertical markets (or, as OMG refers
to them, Domains) started to use the OMG Interface
Definition Language (IDL) to specify standard objects
that all could share. This led OMG to expand its scope
through a major reorganization in early 1996, creat-
ing its Domain Technology Committee that has
grown to include subgroups in Finance/Insurance,
Electronic Commerce, Healthcare, Manufacturing,

Telecommunications, Transportation, Life Science
Research, and Business Objects. Nearly simultaneous
with this expansion was the formation of OMG’s
Analysis and Design Task Force, which adopts speci-
fications supporting software analysis and design.

The result, shown in Figure 1, is an extensive suite
of OMG specifications with enormous appeal to the
enterprise that is now able to field the large-scale appli-
cations they need within a single coherent architecture
that extends from design to run time. Even though the
upper layers of this architecture are only starting to
emerge, the basic infrastructure is well-tested and has
already produced many stories of CORBA success in
mission-critical enterprise applications [4].

An general overview of the OMG architecture is
provided in the sidebar “Architectural Overview,”
which gives an idea of its scope. We survey and
introduce each of the areas listed in the sidebar here
and provide references to additional information.
Other articles in this section will build on this mate-
rial in many of the areas. All OMG specifications are

~Jon Siegel~

When the Object Management Group (OMG) was formed in 1989, interoperability

was its founders’ primary, and almost their sole, objective: A vision of software com-

ponents working smoothly together, without regard to details of any component’s

location, platform, operating system, programming language, or network hardware and software.

Coordinating support for every phase of computing.

omg overview:
CORBA and the OMA in

Enterprise
Computing

available without charge from the OMG Web site
www.omg.org/library/specindx.htm.

UML and the MOF: Supporting Analysis
and Design
Modeling is a key first step in the building of indus-
trial-strength enterprise software systems. Prior to
the development of OMG’s Unified Modeling Lan-
guage (UML) specification [4], there was no way to
transfer models from one modeling tool to another
because tools on the market supported similar but
not-quite-identical metamodels and output artifacts.
UML is a visual language for the development and
exchange of well-defined models for software devel-
opment. Standard UML language components pro-
vide much of the functionality that users need, but
mechanisms for extension and specialization allow
use in areas in which standard components fall short.
It’s designed to support tools and collaborations,
using frameworks, patterns, and components.

UML defines a graphical notation with these stan-
dard diagram types: use-case dia-
grams; class diagrams; behavior
diagrams including state charts,
activity diagrams, and interaction
diagrams; and finally implementa-
tion diagrams, including compo-
nent diagrams and deployment
diagrams. There is no data-flow dia-
gram; the activity diagram provides
this functionality and more. This
graphical notation is the language;
there is (at least presently) no corre-
sponding text-based equivalent. It
is formally defined in the UML
Notation Guide [4], available from

OMG; in addition it is described in the
documentation of various UML-based
tools, and is already the subject of a number
of books [1].

Supplementing the UML, the Meta-
Object Facility (MOF) [4] provides a stan-
dard repository for metadata within the
CORBA architecture. Defined in terms of a
metamodel and set of IDL interfaces, the
MOF supports component-based comput-
ing from modeling and design through
implementation to run time. The common
metamodel can support introspection,

enabling sharing of components across heteroge-
neous distributed environments, and through revi-
sions as components’ life cycles evolve.

The CORBA Computing Model
Figure 2 shows a request passing from a client to an
object implementation in the CORBA architecture.
Two aspects of this architecture stand out:

• Both client and object implementation are iso-
lated from the Object Request Broker (ORB) by
an OMG/ISO IDL interface. CORBA requires
that every object’s interface be expressed in OMG
IDL. Clients see only the object’s interface; never
any implementation detail. This guarantees sub-
stitutability of the implementation behind the
interface—our plug-and-play component software
environment.

• The request does not pass directly from client to
object implementation. Requests are always man-
aged by an ORB. Every invocation of a CORBA
object is passed to the ORB; the form of the
invocation is the same whether the target object
is local or remote. (If remote, the invocation
passes from the ORB of the client to the ORB of
the object implementation). Distribution details

reside only in the ORB where they
are handled by software the user
bought, not built. Application
code, freed of this adminstrative
burden, concentrates on the prob-
lem at hand. Sophisticated imple-
mentation design ensures that the
ORB layer is lightweight and fast,
with extended features called upon
only when needed, for example,
distribution or fault recovery. (The
ORB is not a separate process—in
virtually all current implementa-
tions, ORB functionality is pro-
vided through library routines that

38 October 1998/Vol. 41, No. 10 COMMUNICATIONS OF THE ACM

Common Business Objects*
Business Object Facility*

CORBAfacilities
CORBAservices

Interoperability: IIOP, Asynch*
Real-time*, Embedded* options

Components*, Scripting*
IDL Interfaces, Mappings, and ORB

S
E

C
U

R
IT

Y

UML
Modeling

CORBA
Domains

CORBA
Domains

CORBA
Domains

M
et

a-
O

bj
ec

t
F

ac
ili

ty

Client Obj Impl

IDL IDL

ORB

Figure 1. OMG produces more than just CORBA, as this dia-
gram of the full suite of OMG specifications shows. Parts that
were still in progress when this article was written in mid-
1998 are denoted by asterisks (*).

Figure 2. A request passing from a
client to an object implementation in

the CORBA architecture. In this
case, Client, Object, IDL stub and

skeleton, and ORB all reside within
the same process (shaded region).

are linked into an executable module along with
clients and object implementations. The presence
of the ORB enables both in-process and remote
invocations, by both clients and objects in the
executable module. In-process invocations have
little ORB involvement and execute rapidly,
while remote invocations typically execute with
performance comparable to RPC mechanisms that
provide a similar level of service.)

In CORBA, an object’s interface is defined in the
OMG IDL. The interface definition
specifies the operations the object is
prepared to perform, the input and
output parameters each requires,
and any exceptions that may be
generated along the way. This
interface constitutes a contract with
clients of the object, who use the
same interface definition to build
and dispatch invocations as the
object implementation uses to
receive and respond. This design
provides a great amount of flexibility, and many ben-
efits. It enforces encapsulation, and allows clients to
access object implementations independent of each
other’s programming language.

To the client or user, the OMG IDL interface rep-
resents a promise: when the client sends a proper invo-
cation to an object through its interface, the expected
response will come back. To the object implementor,
the interface represents an obligation: the implemen-
tor must implement, in some programming lan-
guage, all of the operations specified in the interface.
Writing the contract (in OMG IDL), and fulfilling it
(in a programming language such as C++, C, or
Smalltalk), are usually two separate steps in the writ-
ing of a CORBA application, although some ven-
dors’ CORBA products generate OMG IDL
automatically from either source code or application
design information.

For every major programming language, an OMG
standard language mapping [2] specifies how OMG
IDL types and method invocations convert into lan-
guage types and functions. This is how the OMG
IDL skeleton and the object implementation come
together: The OMG IDL compiler uses the mapping
specifications to generate a set of function or method
calls from the OMG IDL operations. Programmers,
usually assisted by an automated or semiautomated
tool, refer to the OMG IDL file and use the language
mappings to generate the corresponding set of func-
tion or method declarations. After compilation and
linking, these resolve so that the skeleton makes the

right calls to invoke operations on the object imple-
mentation. Currently, CORBA specifies OMG IDL
language mappings for C, C++, Java, Cobol,
Smalltalk, and Ada. Mappings don’t have to be stan-
dardized by OMG in order to be useful; implemen-
tations of not-yet-standard mappings are available
now for Objective C, Eiffel, and other languages.
Mappings for Visual Basic, while not standardized,
are usually based on OMG’s COM/CORBA inter-
working specification [2].

Clients may construct their invocations in one of

two modes: static or dynamic. Static invocations are
routed to the client’s ORB through a stub that is
compiled in the target programming language from
the IDL interface definition. Dynamic invocations
are assembled at run time by the client using a set of
ORB functions defined for this purpose. The
Dynamic Invocation Interface (DII) provides an
extremely high degree of flexibility, although it
requires more coding than static (compiled-IDL)
invocations. For purely historical reasons, the DII
provides a deferred-synchronous distributed invocation
mode unavailable for static invocations. A new OMG
asynchronous/messaging specification remedies this
shortcoming, details of which are provided later in
this article.

The CORBA Distribution Model
Figure 3 shows the basis of CORBA distribution:
ORB-to-ORB communication. OMG IDL supports
distribution in a number of ways: it enforces encap-
sulation, and unambiguously defines operations and
types. Named, identifiable, sharable Interface Repos-
itories (IR) [2] ensure that all ORBs on the network
have access to IDL interface definitions.

Building on this, OMG’s standard General Inter-
ORB Protocol (GIOP) specifies all aspects of interop-

COMMUNICATIONS OF THE ACM October 1998/Vol. 41, No. 10 39

Client Obj Impl

IDL IDL

ORB

Client Obj Impl

IDL IDL

ORB

Network

Figure 3. A request passing from a client to an object
implementation in the CORBA architecture. In this case, the
client and target object reside on different machines, and
communicate over a network. The ORB handles network
communications for both Client and target Object.

erability up to (but not including) network transport:
GIOP specifies a small set of standard messages that
ORBs send to each other, so that client and object see
object-oriented invocation and response; a Common
Data Representation (CDR) for IDL datatypes (with
byte-order corrected by the receiver for efficiency);
and a set of transport assumptions. The GIOP con-
tent, layered upon TCP/IP transport, forms IIOP—
the Internet Inter-ORB Protocol, OMG’s mandatory
standard for CORBA-compliant distribution [2].

The scope of CORBA is so vast that no single pro-
tocol could ever meet service and efficiency goals for
all target platforms. Thus the specification supports
additional protocols that may be provided in two
fundamental ways: first, GIOP may be layered
on reliable protocols other than TCP/IP.
Examples include OSI, IPX, ATM,
and the Telecommunications
protocol SS7. Secondly, alter-
native protocols may be based
on content formats other than
GIOP. Gateways may be built
to bridge between alternative
protocols and IIOP; ORBs
that communicate using
IIOP in addition to other
protocols, or that utilize
only non-IIOP protocols but
provide bridges to IIOP are
considered CORBA-compliant.

To the client, the object instance is
represented by its Interoperable Object
Reference (IOR). The exact format of the
IOR, while an OMG standard for interoperability pur-
poses, is opaque to the client. This enforces encapsula-
tion, and allows ORB implementors some freedom to
optimize for efficiency and reliability. Internally, the
IOR format is an extendable, multiple-component
structure that includes a slot for each protocol that may
be used by a client ORB to access an object; for some
protocols, the IOR also includes the network address
of the object’s ORB (or, at least, the network address of
the last known location of the object’s ORB, since
objects may move; when this happens, the original
ORB will refer the client ORB to the new location
with a location_forward IIOP message).

CORBA messaging semantics have just been
expanded. As explained previously, OMG specifica-
tions until recently supported only synchronous
invocations for static invocations, although deferred
synchronous invocations are allowed with the DII. A
new asynchronous/messaging specification standard-
izes a range of asynchronous, deferred-synchronous,
and time-independent (store-and-forward) invoca-

tion modes. Under the new specification [6], quality
of service may be specified in various ways including
automatic priority-raising for requests whose time-
to-live has almost expired. And CORBA clients on
portable computers, for example, may make a
CORBA invocation over a dial-up connection, dis-
connect from the network, connect again later, and
retrieve the response.

CORBA Component Model (CORBAbeans)
A specification still in process when this article was
written in July 1998, CORBA components [6]
extend OMG’s object model to include a number of
features important for distributed systems. The

Request for Proposal, OMG’s requirements doc-
ument that precedes a new specification,

calls for a component model for
CORBA systems that is struc-
tured as a natural extension of
the existing CORBA object
model. Current specification
efforts for Multiple Interfaces

per Object, Objects Passable
by Value, and the emerging
Messaging Service will be
taken into account in the
new specification. The

notion of “component” may
not correspond one-to-one to a

CORBA interface, nor to a CORBA
object; the RFP asks submitters to

propose the exact relationship
between a component and a set of inter-

faces. Components have instance identities, as well as
properties, that are an externally accessible view of a
component’s abstract state that can be used for
design-time component customizing, and that sup-
port mechanisms for notification (event generation)
and validation when a property’s value changes.
Components will support an introspection mecha-
nism and the additional functionality this implies.
CORBA components will map not only to currently
supported programming languages, but also to com-
mercially available component models including Java
beans (although the CORBA component model will
be distributed while some current models are not).

A separate specification effort will define a
CORBA scripting facility to enable user-level assem-
bly of applications from CORBA components.
When this article was written in mid-1998, it was
not possible to say in more detail how this would be
done. Up-to-date information on both components
and scripting is available on OMG’s Web site
www.omg.org/library/schedule.htm.

40 October 1998/Vol. 41, No. 10 COMMUNICATIONS OF THE ACM

IM
A

G
E

C
O

PY
R

IG
H

T
©

 1
9

8
4

, 1
9

9
8

 A
N

D
R

EW
 S

. G
LA

SS
N

ER

Real-Time, Fault-Tolerant, and
Minimal/Embedded CORBA
Real-time distribution support extends the
scope of CORBA to many environments that
could not otherwise consider it. Even without
formal standards for real-time CORBA,
enough vendors provided real-time ORBs to
support a vigorous market. In mid-1998,
OMG adopted its first standard in this area [4,
6], so recently that details weren’t ready when
this article was written. Real-time CORBA is
an optional extension for all ORBs; that is, no
ORB is required to support real-time execu-
tion, but if an ORB does claim real-time support, it
must provide it in the specified way, accessable via
the specified interfaces, in order to be considered
compliant. OMG expects to release its real-time
specification over a number of years; the first specifi-
cation will encompass fixed-priority scheduling,
control over ORB resources for end-to-end pre-
dictability, and flexible communications.

The Portable Object Adapter that couples an
object implementation to its ORB is flexible and
robust enough to support redundant, fault-tolerant
CORBA installations but there is still a need to stan-
dardize the process by which this is accomplished.
Thus the OMG is presently adopting a standard for
fault-tolerant CORBA with a specification encom-
passing both active and passive redundancy modes.

The mandatory parts of the CORBA 2.0 specifica-
tion a product must support for certification include
many that, although useful in a programming envi-
ronment, become useless appendages when an exe-
cutable is burned into silicon. For example, an ORB
burned into a chip will never have to support any
additional clients; if all of its current clients use the
static invocation interface, this ORB could shed its
DII support without consequence. Also, if none of
the original clients use the any IDL type, the ORB
could similarly shed the code used to support this
complex type. The minimal CORBA RFP will estab-
lish an OMG specification that enables such ORBs to
bear a CORBA brand without the “excess baggage”
that would otherwise be required. Embedded applica-
tions tend to be reproduced in great quantities, thus
support here has important consequences for the
CORBA marketplace.

The CORBAservices: Basic Services for
Distributed OO Applications
The Object Management Architecture (Figure 4)
builds upon the CORBA architecture and interoper-
ability foundation to realize OMG’s vision of plug-
and-play component software. A foundation of

standard services invoked using standard interfaces,
the OMA defines an environment where interoper-
ability penetrates upward from the system level into
application components.

The goal of the OMA is simple: when applications
provide basic functionality, let them provide it via a
standard interface. This enables a component software
market both above and below the level of the inter-
face: below it, multiple interchangeable implementa-
tions of the basic functionality (compound document
management, for instance) may still provide differ-
ences in performance, price, or adaptation to run on
specialized platforms, while above it, specialized com-
ponents (a sophisticated editor object, for example)
come to market that can operate on any compound
document managed by a component that conforms to
the standard interface.

The CORBAservices specify basic services that
almost every object needs; this part of the OMA
started first and the CORBA facilities take advan-
tage of much of it. The CORBA facilities provide
intermediate-level services to applications. Applica-
tion Objects, at the uppermost level, will not be
standardized by OMG; this is where vendors will
compete in innovative ways to provide the best com-
bination of features and value for the customers.

For each component of the OMA, the OMG pro-
vides a formal specification—a published document
prescribing the syntax (how to invoke each opera-
tion on each object) in OMG IDL, and semantics
(what each operation does) in English text. Vendors
of OMA-compliant systems then implement and
sell the services (some bundled with an ORB pack-
age, others not), which are accessed via the specified
OMG OMG IDL interfaces. Vendors do not have to
provide every service, but every service they provide
must conform to the OMG specifications in order

COMMUNICATIONS OF THE ACM October 1998/Vol. 41, No. 10 41

Vertical (Domain)
CORBA Facilities

Horizontal
CORBA Facilities

Application
Objects

CORBA Services

Object Request Broker

Figure 4. The Object Management Architecture (OMA)
defines OMG’s foundation of standard services and facilities for
distributed object architectures

to be considered compliant.
The CORBAservices provide fundamental, nearly

system-level services to OO applications and their
components. Out of the approximately 15 defined
services, four functions are key:

• Access to object references across the network,
supported by the Naming Service and the Trader
Service;

• Notification of significant events or objects’
change of state, supported by the Event Service
and the Notification Service;

• Support for transactional semantics (two-phase
commit and rollback), supported by the Object
Transaction Service (OTS); and

• Support for secure interoperability, supported by
the Object Security Service.

Other CORBAservices support Object life cycle,
relationships, and additional functions.

In summary, CORBA and OMG IDL provide the
interoperability infrastructure that objects will use
to link together. Then the OMA standardizes a set of
common foundation objects, including the key
“matchmaking” services Naming and Trader that
get clients and object implementations together as
necessary, along with other basic services. Whenever
a client needs to use a service or an object, it can find
it, communicate with it, and invoke it.

The Horizontal CORBAfacilities
As shown in Figure 4, the CORBAfacilities (encom-
passing both horizontal and vertical/domain por-
tions) fill in the architecture between the basic
CORBAservices and the marketplace-provided
Application Objects. When the full architecture is
realized in off-the-shelf products, companies will be
able to share application-level data and functionality
to integrate their IS. Since top-level Application
Objects will not be standardized, the mid-level
CORBAfacilities will be accessed either by innova-
tive clients purchased in a competitive software mar-
ketplace, or by targeted modules specifically tailored
to each company’s needs.

OMG’s original plan for the horizontal CORBAfa-
cilities was ambitious, mapping out four major cate-
gories: User Interface, Information Management,
Systems Management, and Task Management. While
these are still useful to conceptualize the scope of this
part of the OMA, the Common Facilities Task Force
that does this work has been absorbed into the
ORBOS (ORB and Object Services) Platform Task
Force and no longer exists as a separate group. Thus
new facilities are being added slowly, usually in

response to specific industry demands. Currently
defined CORBA facilities include the XCMF Sys-
tems Management Specification, shared with The
Open Group, and a Print Spooling facility [1, 2].

The Vertical (Domain) CORBAfacilities
There are many advantages to IDL as a language for
specification of standard, shareable objects: It was
designed for this purpose, and an interface specified
and maintained in IDL is also formally defined in
every programming language that has an OMG-
specified mapping. And, since late 1997, OMG IDL
has also been an ISO standard (number 14750),
enabling even formal standards organizations to
build and adopt IDL interfaces.

As might be expected, even before the reorganiza-
tion that created the Domain Technology Commit-
tee (DTC) and started OMG’s formal entry into
domain specification setting, organizations were
defining their own specifications in IDL. Because of
active OMG support since the committee reorgani-
zation in early 1996, these efforts have increased
manyfold. At their center is OMG’s Domain Tech-
nology Committee, which is empowered through
the organization’s procedures to charter Task Forces
in the various domains. These Domain Task Forces
(DTF) write requirements documents (RFPs, in
OMG-speak) for new specifications, and evaluate
and recommend candidate specifications. Based on a
DTF recommendation, the DTC conducts a formal
vote of adoption, ensuring that every domain speci-
fication has the endorsement of all domains and not
just the one in which it originated. Thus, general
specifications (such as the one for a Currency facil-
ity), that benefit from the expertise of members of
the Finance DTF that undertook its specification
effort, must meet the needs of the other domains in
order to pass their DTC vote. In a final step, recom-
mended documents need approval by OMG’s Board
of Directors to become official specifications.

There are currently eight Domain Task Forces:
Business Objects, Finance/Insurance, Electronic
Commerce, Manufacturing, Healthcare (that task
force has adopted the name CORBAmed), Telecom-
munications, Transportation, and Life Science
Research. Also meeting at OMG but not yet char-
tered as DTFs are Special Interest Groups in Utilities
(primarily electric power, that is currently undergo-
ing deregulation in the U.S.) and Statistics. By
March 1998, just over two years after the domain
effort started, six domain specifications were either
adopted or being considered by the DTC vote and
new specifications were moving through the pipeline
at a rate of 12 or more per year.

42 October 1998/Vol. 41, No. 10 COMMUNICATIONS OF THE ACM

The six completed specifications cover a wide
range of items:

1. A Currency Facility, from Finance DTF.
2. A set of Product Data Management Enablers,

from the Manufacturing DTF.
3. The Person Identifier Service (PIDS), from

CORBAmed.
4. The Lexicon Query Service, also from

CORBAmed.
5. An Audio/Visual Stream Control Object, from

Telecomm DTF.
6. The Notification Service, also from Telecomm.

Market acceptance is excellent; in spite of their
newness, several of these specifications are imple-
mented in products at beta or GA level: Audio/Visual
Stream Control Object, PIDS, PDM, and others.
PDM is being implemented by a consortium of man-
ufacturers and software vendors. Interoperability of
the PIDS specification was demonstrated at the med-
ical software conference HIMSS last year, in a multi-
vendor configuration using the show’s network.

Summary
With an architecture based on the Interface Defini-
tion Language OMG/ISO IDL, the Object Request
Broker, and the Internet Inter-ORB Protocol (IIOP),
CORBA components interoperate regardless of loca-
tion, platform, programming language, system ven-
dor, or network. Desirable features such as
asynchronous invocation support, real-time, embed-
ded, and fault-tolerance support are being added, as
is a component model. Building on this architecture,
the OMA adds the CORBAservices, a set of stan-
dardized definitions of components providing ser-
vices such as object naming, life cycle, security,

transactions, and more. Domain-provided additions
specify frameworks for specialized but industry-stan-
dard components in Finance, Electronic Commerce,
Manufacturing, Healthcare, Transportation,
Telecommunications, Life Sciences, and general
Business. At the beginning of the software process,
the Unified Modeling Language and Meta-Object
Facility support modeling and design.

This environment has tremendous appeal for vir-
tually any enterprise, but especially for those for
which heterogeneity is an issue. With coordinated
support for every phase of computing from design
through implementation to run time, CORBA inte-
grates legacy functionality with today’s sophisticated
hardware and software, allowing businesses to shop
for the best products and integrate them into a
coherent, maintainable architecture. The OMG Web
site lists a large number of success stories, large mis-
sion-critical CORBA applications in use at various
enterprises today (specifically at www.corba.org).
The broadly based, growing support for CORBA
attests that the number of success stories will con-
tinue to expand rapidly.

References
1. Eriksson, H.E. and Penker, M. UML Toolkit. Wiley, New York, 1998.
2. Object Management Group. CORBA Specifications; www.omg.org/

library/specindx.htm.
3. Object Management Group. OMG TC Work in Progress;

www.omg.org/library/schedule.htm.
4. Object Management Group. CORBA Success Stories; www.corba.org.
5. Object Management Group. OMG TC Work in Progress: Technology

Adoptions; www.omg.org/library/schedule/Technology_Adoptions.htm
6. Siegel, J., Ed. CORBA Fundamentals and Programming. Wiley, 1996.

Jon Siegel (siegel@omg.org) is the director of Domain
Technology at the Object Management Group in Framingham,
Mass.; www.omg.org

© 1998 ACM 0002-0782/98/1000 $5.00

c

COMMUNICATIONS OF THE ACM October 1998/Vol. 41, No. 10 43

The OMG architecture offers:
• Support for Analysis and Design: UML [5] and the MOF [4];
• Basic object-oriented computing model: The ORB (Object Request Broker); OMG/ISO IDL (Interface Definition

Language) and its mappings to C, C++, Java, Smalltalk, Cobol, and Ada [2];
• Distribution: The protocol content specification GIOP and its mapping to TCP/IP, IIOP [2]; alternative mappings and

protocols; extensions to messaging and asynchronous invocation semantics [6];
• Component Model (now in process): CORBA Components and scripting; multiple interfaces; objects passable by value [6];
• Specialized modes: Support for Real-time, Fault-tolerant, and Embedded CORBA [6];
• CORBAservices, basic services for distributed object-oriented applications: The most important are the naming and

trader services, the event and notification services, the Object Transaction Service (OTS), and the security service [2];
• Horizontal CORBAfacilities: Systems management, print spooling, and similar services [6]; and finally
• Vertical market (Domain) CORBAfacilities: Support for the enterprise, built upon this firm and wide foundation, including

standard objects for standard functions, shareable within and across domains [2, 6].

Architectural Overview

